Preprocess
This module contains functions for training and evaluating a neural network model using PyTorch. It includes the following key components:
train
: Trains the model for a specified number of epochs, logs training and validation losses, and saves the model state at specified intervals.score
: Evaluates the model on a test dataset, calculates various metrics, and generates plots for a specified number of test samples.
The module relies on several external utilities and models from the speckcn2
package, including EnsembleModel
, ComposableLoss
, and Normalizer
.
assemble_transform(conf)
Assembles the transformation to apply to each image.
Parameters:
-
conf
(dict
) –Dictionary containing the configuration
Returns:
-
transform
(Compose
) –Transformation to apply to the images
Source code in src/speckcn2/preprocess.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
create_average_dataset(dataset, average_size)
Creates a dataset of averages from a dataset of single images. The averages are created by grouping together average_size images.
Parameters:
-
dataset
(list
) –List of single images
-
average_size
(int
) –The number of images that will be averaged together
Returns:
-
average_dataset
(list
) –List of averages
Source code in src/speckcn2/preprocess.py
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
|
create_ensemble_dataset(dataset, ensemble_size)
Creates a dataset of ensembles from a dataset of single images. The ensembles are created by grouping together ensemble_size images. These images will be used to train the model in parallel.
Parameters:
-
dataset
(list
) –List of single images
-
ensemble_size
(int
) –The number of images that will be processed together as an ensemble
Returns:
-
ensemble_dataset
(list
) –List of ensembles
Source code in src/speckcn2/preprocess.py
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
|
get_ensemble_dict(tag_files)
Function to associate each Cn2 profile to an ensemble ID for parallel processing.
Parameters:
-
tag_files
(dict
) –Dictionary of image files and their corresponding tag files
Returns:
-
ensemble_dict
(dict
) –Dictionary of image files and their corresponding ensemble IDs
Source code in src/speckcn2/preprocess.py
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
|
get_tag_files(file_list, datadirectory)
Function to check the existence of tag files for each image file.
Parameters:
Returns:
-
tag_files
(dict
) –Dictionary of image files and their corresponding tag files
Source code in src/speckcn2/preprocess.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
|
imgs_as_single_datapoint(conf, nimg_print=5)
Preprocesses the data by loading images and tags from the given directory, applying a transformation to the images. Each image is treated as a single data point.
Parameters:
-
conf
(dict
) –Dictionary containing the configuration
-
nimg_print
(int
, default:5
) –Number of images to print
Returns:
-
all_images
(list
) –List of all images
-
all_tags
(list
) –List of all tags
-
all_ensemble_ids
(list
) –List of all ensemble ids, representing images from the same Cn2 profile
Source code in src/speckcn2/preprocess.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
prepare_data(conf, nimg_print=5)
If not already available, preprocesses the data by loading images and tags from the given directory, applying a transformation to the images.
Parameters:
-
conf
(dict
) –Dictionary containing the configuration
-
nimg_print
(int
, default:5
) –Number of images to print
Returns:
-
all_images
(list
) –List of all images
-
all_tags
(list
) –List of all tags
-
all_ensemble_ids
(list
) –List of all ensemble ids, representing images from the same Cn2 profile
Source code in src/speckcn2/preprocess.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
print_average_info(dataset, average_size, ttsplit)
Prints the information about the average dataset.
Parameters:
-
dataset
(list
) –The average dataset
-
average_size
(int
) –The number of images in each average
-
ttsplit
(int
) –The train-test split
Source code in src/speckcn2/preprocess.py
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
|
print_dataset_info(dataset, ttsplit)
Prints the information about the dataset.
Parameters:
Source code in src/speckcn2/preprocess.py
525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
|
print_ensemble_info(dataset, ensemble_size, ttsplit)
Prints the information about the ensemble dataset.
Parameters:
-
dataset
(list
) –The ensemble dataset
-
ensemble_size
(int
) –The number of images in each ensemble
-
ttsplit
(int
) –The train-test split
Source code in src/speckcn2/preprocess.py
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
|
split_dataset(dataset, ttsplit)
Splits the dataset into training and testing sets.
Parameters:
Returns:
Source code in src/speckcn2/preprocess.py
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
|
train_test_split(all_images, all_tags, all_ensemble_ids, nz)
Splits the data into training and testing sets.
Parameters:
-
all_images
(list
) –List of images
-
all_tags
(list
) –List of tags
-
all_ensemble_ids
(list
) –List of ensemble ids
-
nz
(Normalizer
) –The normalizer object to preprocess the data
Returns:
Source code in src/speckcn2/preprocess.py
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
|