Skip to content

Models

This module contains the definition of the EnsembleModel class and a setup_model function.

The EnsembleModel class is a wrapper that allows any model to be used for ensembled data. The setup_model function initializes and returns a model based on the provided configuration.

EarlyStopper(patience=1, min_delta=0)

Early stopping to stop the training when the validation loss does not decrease anymore.

Parameters:

  • patience (int, default: 1 ) –

    Number of epochs of tolerance before stopping.

  • min_delta (float, default: 0 ) –

    Percentage of tolerance in considering the loss acceptable.

Source code in src/speckcn2/mlmodels.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def __init__(self, patience: int = 1, min_delta: float = 0):
    """Initializes the EarlyStopper.

    Parameters
    ----------
    patience: int
        Number of epochs of tolerance before stopping.
    min_delta: float
        Percentage of tolerance in considering the loss acceptable.
    """

    self.patience = patience
    self.min_delta = min_delta
    self.counter = 0
    self.min_validation_loss = float('inf')

early_stop(validation_loss)

Computes if the early stop condition is met at the current step.

Parameters:

  • validation_loss (float) –

    Current value of the validation loss

Returns:

  • bool –

    It returns True if the training has met the stop condition.

Source code in src/speckcn2/mlmodels.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
def early_stop(self, validation_loss: float) -> bool:
    """ Computes if the early stop condition is met at the current step.

    Parameters
    ----------
    validation_loss: float
        Current value of the validation loss

    Returns
    -------
    bool
        It returns True if the training has met the stop condition.
    """
    if validation_loss < self.min_validation_loss:
        self.min_validation_loss = validation_loss
        self.counter = 0
    elif validation_loss > self.min_validation_loss * (1 + self.min_delta):
        self.counter += 1
        if self.counter >= self.patience:
            return True
    return False

EnsembleModel(conf, device)

Bases: Module

Wrapper that allows any model to be used for ensembled data.

Parameters:

  • conf (dict) –

    The global configuration containing the model parameters.

  • device (device) –

    The device to use

Source code in src/speckcn2/mlmodels.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def __init__(self, conf: dict, device: torch.device):
    """Initializes the EnsembleModel.

    Parameters
    ----------
    conf: dict
        The global configuration containing the model parameters.
    device : torch.device
        The device to use
    """
    super(EnsembleModel, self).__init__()

    self.ensemble_size = conf['preproc'].get('ensemble', 1)
    self.device = device
    self.uniform_ensemble = conf['preproc'].get('ensemble_unif', False)
    resolution = conf['preproc']['resize']
    self.D = conf['noise']['D']
    self.t = conf['noise']['t']
    self.snr = conf['noise']['snr']
    self.dT = conf['noise']['dT']
    self.dO = conf['noise']['dO']
    self.rn = conf['noise']['rn']
    self.fw = conf['noise']['fw']
    self.bit = conf['noise']['bit']
    self.discretize = conf['noise']['discretize']
    self.rot_sym = conf['noise'].get('rotation_sym', 0)
    if self.rot_sym > 0:
        self.rot_fold = 360 // self.rot_sym
    self.apply_masks = conf['noise'].get('apply_masks', False)
    if self.apply_masks:
        self.mask_D, self.mask_d, self.mask_X, self.mask_Y = self.create_masks(
            resolution)

apply_noise(image_tensor)

Processes a tensor of 2D images.

Parameters:

  • image_tensor (Tensor) –

    Tensor of 2D images with shape (batch, channels, width, height).

Returns:

  • processed_tensor ( Tensor ) –

    Tensor of processed 2D images.

Source code in src/speckcn2/mlmodels.py
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def apply_noise(self, image_tensor: torch.Tensor) -> torch.Tensor:
    """Processes a tensor of 2D images.

    Parameters
    ----------
    image_tensor : torch.Tensor
        Tensor of 2D images with shape (batch, channels, width, height).

    Returns
    -------
    processed_tensor : torch.Tensor
        Tensor of processed 2D images.
    """
    batch, channels, height, width = image_tensor.shape
    processed_tensor = torch.zeros_like(image_tensor)

    # Apply rotation symmetry
    if self.rot_sym > 0:
        angle = random.randint(0, self.rot_fold)
        image_tensor = torch.rot90(image_tensor, angle, (2, 3))

    # Normalize wrt optical power
    image_tensor = image_tensor / torch.mean(
        image_tensor, dim=(2, 3), keepdim=True)

    amp = self.rn * 10**(self.snr / 20)

    for i in range(batch):
        for j in range(channels):
            B = image_tensor[i, j]

            ## Apply masks
            if self.apply_masks:
                B[self.mask_D] = 0
                B[self.mask_d] = 0
                B[self.mask_X] = 0
                B[self.mask_Y] = 0

            # Add noise sources
            A = self.rn + self.rn * torch.randn(
                height, width, device=self.device) + amp * B + torch.sqrt(
                    amp * B) * torch.randn(
                        height, width, device=self.device)

            # Make a discretized version
            if self.discretize == 'on':
                C = torch.round(A / self.fw * 2**self.bit)
                C[A > self.fw] = self.fw
                C[A < 0] = 0
            else:
                C = A

            processed_tensor[i, j] = C

    return processed_tensor

create_masks(resolution)

Creates the masks for the circular aperture and the spider.

Parameters:

  • resolution (int) –

    Resolution of the images.

Returns:

  • mask_D ( Tensor ) –

    Mask for the circular aperture.

  • mask_d ( Tensor ) –

    Mask for the central obscuration.

  • mask_X ( Tensor ) –

    Mask for the horizontal spider.

  • mask_Y ( Tensor ) –

    Mask for the vertical spider.

Source code in src/speckcn2/mlmodels.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def create_masks(
    self, resolution: int
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    """Creates the masks for the circular aperture and the spider.

    Parameters
    ----------
    resolution : int
        Resolution of the images.

    Returns
    -------
    mask_D : torch.Tensor
        Mask for the circular aperture.
    mask_d : torch.Tensor
        Mask for the central obscuration.
    mask_X : torch.Tensor
        Mask for the horizontal spider.
    mask_Y : torch.Tensor
        Mask for the vertical spider.
    """
    # Coordinates
    x = torch.linspace(-1, 1, resolution, device=self.device)
    X, Y = torch.meshgrid(x, x, indexing='ij')
    d = self.dO * self.D  # Diameter obscuration

    R = torch.sqrt(X**2 + Y**2)

    # Masking image
    mask_D = R > self.D
    mask_d = R < d
    mask_X = torch.abs(X) < self.t / 2
    mask_Y = torch.abs(Y) < self.t / 2

    return mask_D, mask_d, mask_X, mask_Y

forward(model, batch_ensemble)

Forward pass through the model.

Parameters:

  • model (Module) –

    The model to use

  • batch_ensemble (list) –

    Each element is a batch of an ensemble of samples.

Source code in src/speckcn2/mlmodels.py
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
def forward(self, model, batch_ensemble):
    """Forward pass through the model.

    Parameters
    ----------
    model : torch.nn.Module
        The model to use
    batch_ensemble : list
        Each element is a batch of an ensemble of samples.
    """

    if self.ensemble_size == 1:
        batch = batch_ensemble
        # If no ensembling, each element of the batch is a tuple (image, tag, ensemble_id)
        images, tags, ensembles = zip(*batch)
        images = torch.stack(images).to(self.device)
        images = self.apply_noise(images)
        tags = torch.tensor(np.stack(tags)).to(self.device)

        return model(images), tags, images
    else:
        batch = list(itertools.chain(*batch_ensemble))
        # Like the ensemble=1 case, I can process independently each element of the batch
        images, tags, ensembles = zip(*batch)
        images = torch.stack(images).to(self.device)
        images = self.apply_noise(images)
        tags = torch.tensor(np.stack(tags)).to(self.device)

        model_output = model(images)

        # To average the self.ensemble_size outputs of the model I extract the confidence weights
        predictions = model_output[:, :-1]
        weights = model_output[:, -1]
        if self.uniform_ensemble:
            weights = torch.ones_like(weights)
        # multiply the prediction by the weights
        weighted_predictions = predictions * weights.unsqueeze(-1)
        # and sum over the ensembles
        weighted_predictions = weighted_predictions.view(
            model_output.size(0) // self.ensemble_size, self.ensemble_size,
            -1).sum(dim=1)
        # then normalize by the sum of the weights
        sum_weights = weights.view(
            weights.size(0) // self.ensemble_size,
            self.ensemble_size).sum(dim=1)
        ensemble_output = weighted_predictions / sum_weights.unsqueeze(-1)

        # and get the tags and ensemble_id of the first element of the ensemble
        tags = tags[::self.ensemble_size]
        ensembles = ensembles[::self.ensemble_size]

        return ensemble_output, tags, images

get_a_resnet(config)

Returns a pretrained ResNet model, with the last layer corresponding to the number of screens.

Parameters:

  • config (dict) –

    Dictionary containing the configuration

Returns:

  • model ( Module ) –

    The model with the loaded state

  • last_model_state ( int ) –

    The number of the last model state

Source code in src/speckcn2/mlmodels.py
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def get_a_resnet(config: dict) -> tuple[nn.Module, int]:
    """Returns a pretrained ResNet model, with the last layer corresponding to
    the number of screens.

    Parameters
    ----------
    config : dict
        Dictionary containing the configuration

    Returns
    -------
    model : torch.nn.Module
        The model with the loaded state
    last_model_state : int
        The number of the last model state
    """

    model_name = config['model']['name']
    model_type = config['model']['type']
    pretrained = config['model']['pretrained']
    nscreens = config['speckle']['nscreens']
    data_directory = config['speckle']['datadirectory']
    ensemble = config['preproc'].get('ensemble', 1)

    if model_type == 'resnet18':
        model = torchvision.models.resnet18(
            weights='IMAGENET1K_V1' if pretrained else None)
        finaloutsize = 512
    elif model_type == 'resnet50':
        model = torchvision.models.resnet50(
            weights='IMAGENET1K_V2' if pretrained else None)
        finaloutsize = 2048
    elif model_type == 'resnet152':
        model = torchvision.models.resnet152(
            weights='IMAGENET1K_V2' if pretrained else None)
        finaloutsize = 2048
    else:
        raise ValueError(f'Unknown model {model_type}')

    # If the model uses multiple images as input,
    # add an extra channel as confidence weight
    # to average the final prediction
    if ensemble > 1:
        nscreens = nscreens + 1

    # Give it its name
    model.name = model_name

    # Change the model to process black and white input
    model.conv1 = torch.nn.Conv2d(1,
                                  64,
                                  kernel_size=(7, 7),
                                  stride=(2, 2),
                                  padding=(3, 3),
                                  bias=False)
    # Add a final fully connected piece to predict the output
    model.fc = create_final_block(config, finaloutsize, nscreens)

    return load_model_state(model, data_directory)

get_scnn(config)

Returns a pretrained Spherical-CNN model, with the last layer corresponding to the number of screens.

Source code in src/speckcn2/mlmodels.py
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
def get_scnn(config: dict) -> tuple[nn.Module, int]:
    """Returns a pretrained Spherical-CNN model, with the last layer
    corresponding to the number of screens."""

    model_name = config['model']['name']
    model_type = config['model']['type']
    datadirectory = config['speckle']['datadirectory']

    model_map = {
        'scnnC8': 'C8',
        'scnnC16': 'C16',
        'scnnC4': 'C4',
        'scnnC6': 'C6',
        'scnnC10': 'C10',
        'scnnC12': 'C12',
    }
    try:
        scnn_model = SteerableCNN(config, model_map[model_type])
    except KeyError:
        raise ValueError(f'Unknown model {model_type}')

    scnn_model.name = model_name

    return load_model_state(scnn_model, datadirectory)

setup_model(config)

Returns the model specified in the configuration file, with the last layer corresponding to the number of screens.

Parameters:

  • config (dict) –

    Dictionary containing the configuration

Returns:

  • model ( Module ) –

    The model with the loaded state

  • last_model_state ( int ) –

    The number of the last model state

Source code in src/speckcn2/mlmodels.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
def setup_model(config: dict) -> tuple[nn.Module, int]:
    """Returns the model specified in the configuration file, with the last
    layer corresponding to the number of screens.

    Parameters
    ----------
    config : dict
        Dictionary containing the configuration

    Returns
    -------
    model : torch.nn.Module
        The model with the loaded state
    last_model_state : int
        The number of the last model state
    """

    model_name = config['model']['name']
    model_type = config['model']['type']

    print(f'^^^ Initializing model {model_name} of type {model_type}')

    if model_type.startswith('resnet'):
        return get_a_resnet(config)
    elif model_type.startswith('scnnC'):
        return get_scnn(config)
    else:
        raise ValueError(f'Unknown model {model_name}')