MLOps
score(model, test_set, device, criterion, normalizer, nimg_plot=100)
Tests the model.
Parameters:
-
model
(Module
) –The model to test
-
test_set
(list
) –The testing set
-
device
(device
) –The device to use
-
criterion
(ComposableLoss
) –The composable loss function, where I can access useful parameters
-
normalizer
(Normalizer
) –The normalizer used to recover the tags
-
nimg_plot
(int
, default:100
) –Number of images to plot
Returns:
-
test_tags
(list
) –List of all the predicted tags of the test set
-
test_losses
(list
) –List of all the losses of the test set
-
test_measures
(list
) –List of all the measures of the test set
-
test_cn2_pred
(list
) –List of all the predicted Cn2 profiles of the test set
-
test_cn2_true
(list
) –List of all the true Cn2 profiles of the test set
-
test_recovered_tag_pred
(list
) –List of all the recovered tags from the model prediction
-
test_recovered_tag_true
(list
) –List of all the recovered tags
Source code in src/speckcn2/mlops.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
train(model, last_model_state, conf, train_set, test_set, device, optimizer, criterion, criterion_val)
Trains the model for the given number of epochs.
Parameters:
-
model
(Module
) –The model to train
-
last_model_state
(int
) –The number of the last model state
-
conf
(dict
) –Dictionary containing the configuration
-
train_set
(list
) –The training set
-
test_set
(list
) –The testing set
-
device
(device
) –The device to use
-
optimizer
(optim
) –The optimizer to use
-
criterion
(ComposableLoss
) –The loss function to use
-
criterion_val
(ComposableLoss
) –The loss function to use for validation
Returns:
-
model
(Module
) –The trained model
-
average_loss
(float
) –The average loss of the last epoch
Source code in src/speckcn2/mlops.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|